上海新茶资源

新闻资讯

News
联系我们 18205706619
News 新闻详情

边缘计算将如何改变制造业?

日期: 2018-11-24
浏览次数: 50

全球制造业正在经历一场数字化转型的变革,物联网将所有生产线上的机器设备连接起来,用户可以在任何地方查看设备状态和生产进度,许多大型IT公司也针对推出了相关的服务,为移动用户提供实时的制造数据。

工业物联网主要是将生产设备、人和产品的数据采集到云端计算平台,再利用软件系统和机器学习技术进行分析和预测,以便于洞察更多隐藏的商业机会。不过,随着越来越多的设备连网和大量数据的传输,对网络和云系统产生了很大的压力。

为了解决网络拥堵的问题,一些IT公司开始推出边缘计算产品,并得到了工业用户的广泛使用。边缘计算允许物联网设备生成的数据在更接近创建的位置处理,而不是通过长路径发送到数据中心或云,从而减轻了网络带宽的负荷,同时也提升了现场数据处理的及时性。

究竟什么是边缘计算?

边缘计算可以看作是一种微型的数据中心,它可以在本地处理或存储关键数据,并将所有接收的数据推送到中央数据中心或云存储。可以说边缘计算是将云的能力扩展到工业现场,通过本地的计算设备将数据进行采集、清洗、整理等处理,然后再传输到云端。

在大多数情况下,大部份的数据信息都将存在于云中,而边缘设备作为云计算的补充,大大提升了物联网设备连接到云的效率。边缘计算在本地对数据进行分类,因此其中一些数据在本地处理,从而减少了到中央存储的容量。通常IoT设备将数据传输到本地计算设备,数据先在边缘处理,然后其部分被发送到公司数据中心。

边缘计算可减少网络的延迟性,因为数据无需通过网络传输到数据中心或云进行处理。这对于一些时间要求比较高的行业特别重要,例如制造业中,毫秒级延迟都可能无法维持机器的正常运行,工业自动化生产线需要实时数据采集和即刻的反馈处理。

边缘计算的工业应用场景

制造业向智能化升级转型,生产设备的复杂程度越来越高,大量的数据可能只有部分是关键或者有意义的,例如在海洋中的石油钻井平台,有数千个传感器产生大量数据,其中大部分可能无关紧要,有些只是确认系统是否在正常运行。但是,机器的数据一旦产生就不一定需要通过网络发送,这是不合理的。

所以,以很多场合需要边缘计算系统对数据进行处理,然后再将每日报告发送到中央数据中心进行长期存储,边缘计算系统减少了网络的数据量。目前边缘计算在工业中的应用体现在几个方面,主要是针对设备和供应链系统的监控和优化。

设备保护。随着IT技术和工业技术的融合发展,现场机器设备不断升级,并拥有了一些运算的能力,例如智能水泵可以利用边缘计算进行基本的分析,设定系统安全的阈值,如果设备超限就执行泵关闭的动作。边缘计算设备进行此类应用意味着不需连接互联网和没有决策延迟,只要在设备端安装了边缘计算,即使与云系统连接中断,也可以始终如一地实施关键任务。

性能监控。机器运行的效率影响到工厂整体的产出,所以通常设备厂商会对其机器进行实时的监控,那么采用边缘计算可以实时得到数据和及时解决现场的问题。尽管可以在云中执行很多数据的分析,但某些信息的时间价值很高,响应延迟和等待来自云的决策可能会造成重大损失。因此,使用边缘计算来对来自工厂中传感器的多个数据点进行实时分析是十分关键的。

供应链优化。要提升工厂的效率,通常需要对整个生产过程进行评估和优化,从产品设计、材料采购、制造、销售和物流等环节都要进行分析。边缘计算可以在短时间内从多个来源获取数据,并进行分析整理,可以适应业务系统中的供应链优化计划。


News / 相关新闻 More
2019 - 03 - 02
伴随越来越多的高科技汽车电子产品的开发与应用,如何解决汽车电子系统的电磁兼容问题,提高汽车的可靠性和安全性,已经成为一个非常重要和迫切的问题。然而接地设计作为根治电磁兼容问题方法之一,地偏移测试显得就尤为重要了,因此本文对接地设计及地偏移测试进行了解读。一、整车系统接地设计1、地线的意义地线在汽车上不仅仅是一个接点,它是一个综合的系统的汽车电气系统,它的主要功能有:●提供给直流负载、交流负载和瞬变负载电流回路,连接蓄电池或发电机的负极端;●提供电压给传感器、通讯系统、单端数字输入等;●静电屏蔽,隔离外部RF辐射;●提供静电放电泄流,ESD保护;●汽车天线的地平面;●降低电平,减小腐蚀。2、地线可靠性地线回路的可靠性主要由以下几个主要关键因素决定:●接地金属的连接面,包括接地板之间、接地线和接地板之间的连接情况;●涂覆层及润滑油对传导地线连接板及其紧固件的影响;●潜在的腐蚀;●潜在的机械退化...
2019 - 03 - 04
图24所示为喷油压力从160MPa提高到200MPa时升功率的提高与增压压力及爆压之间的关系。与之前低升功率分布的区域相比,喷油压力增大后产生不同的变化。1、增压压力低爆压高时,升功率增加量很小(3kW/L)如图22所示,在该区域为达到高爆压喷油提前角增大。因此,喷到燃烧室外部的燃油量增大带来高燃油密度和高碳烟排放。随着喷油压力升高,喷到燃烧室外部的燃油量更高,削弱了高喷射压力带来的优势。2、增压压力高爆压低时,升功率比之前区域的高一些(4~6kW/L)。为限制爆压燃烧相位延迟,而喷油压力的升高有助于改善燃烧相位。3、图24表明同时增大爆压和增压压力时提高喷油压力可显著提高升功率(>7kW/L)(箭头所指斜线部分)。图24喷油压力从160MPa增大到200MPa时升功率增加当喷油压力与高爆压高增压压力结合起来可大大提高喷油压力对于提升升功率的潜能。研究中没有规定爆压及增压力的限制范围。突破...
2019 - 03 - 02
摘要发动机小型化是提高效率最有前途的方法之一,由于发动机排量减小需要更大的升功率。研究基于具有代表性的乘用车的原型机IFP的单缸机的试验工作开展。在高热机负荷约束下,该机可达到非常高的升功率。在原型机高压共轨设备压力允许范围内(可达250MPa)对全负荷及部分负荷工况点开展试验。结果表明,在全负荷工况,通过提高喷油压力来增加燃油速率比增大喷孔直径更有优势,这主要是由于较小的喷孔直径可以改善空气卷吸。当发动机的热机负荷受到更大限制,且有增压系统时,提高喷油压力体现的优势更加突出。最后,结合高喷油压力、高增压压力以及高爆压,升功率可高达85-90kW/L,燃空当量比可实现0.9。介绍在能源危机及石油储备限制的环境下,研究减少不可再生能源的消耗成为日益关注的焦点。昂贵的石油价格迫使全球消费者将目标转向低油耗的乘用车。此外,备受关注的全球变暖问题及燃油消耗与温室气体排放之间的关系促成乘用车严格的C...
2019 - 03 - 02
测试与测量专家罗德与施瓦茨为新罕布什尔大学互操作性实验室(UNH-IOL)提供了一套汽车以太网测试解决方案。从现在开始, OEM、一级供应商、二级供应商和系统集成商们可以通过UNH-IOL提交他们的 产品进行兼容性认证,同时UNH-IOL也是第一个开放联盟认可的汽车以太网测试认证实验室。2019年2月15日——罗德与施瓦茨与UNH-IOL在汽车以太网测试平台上进行了合作,该平台能够使客户实现对100base-T1和1000base-T1进行兼容性测试,测试包括物理层(PHY)和电子控制单元(ECU)。此UNH-IOL是最先进的设施,允许成员公司定制测试设备和软件。芯片组制造商可以在单个实验室基于TC8开放联盟测试规范定义对他们的100/1000base-T1产品进行测试。罗德与施瓦茨立足于汽车以太网开发的最前沿。该公司是第一个测试和验证1000base-T1 第一层(物理层)所包含的所有测...